

European Standardization Organizations

Webinar 'How can CEN/TC 442 support digitalization of data in design and product standards'

Webinar moderator

EIS SOMERS

Project Manager
Public Relations
CEN-CENELEC
esomers@cencenelec.eu

Get the most out of the webinar today

- ▶ You are muted
- Use the Q&A panel to submit your questions

- ► Talk about us with #training4standards
 - On X @Standards4EU
 - On Bluesky @cen-cenelec.bsky.social
 - ▶ On LinkedIn <u>www.linkedin.com/company/cen-and-cenelec</u>

Agenda

- General information on BIM & scope of CEN/TC 442
 (Øivind ROOTH Standards Norway CEN/TC 442 Chair)
- CEN/TC 442 standards map (Stepanka TOMANOVA - UNMZ)
- Construction Products Regulation (Espen SCHULZE - Standards Norway)
- 4. CEN/TC 442 standards Use Cases
 - a) CEN/TC 33 "Doors, windows, shutters, building hardware and curtain walling" (Kai OBERSTE-UFER) (DIN)
 - b) CEN/TC 169 Light and lighting (Robert HEINZE) (DIN)
 - c) Digital transformation Standards digitalization (Etienne CAILLEAU) (AFNOR)

Glossary

- ►BIM Building Information Modelling
- ►CAG Chairpersons Advisory Group
- ►ESPR Ecodesign for Sustainable Products
- ► CPR Construction Products Regulation
- ▶DPP Digital Product Passport
- ▶WI work item
- ► DoPC Declaration of Performance and Conformity
- ▶EPD Environment Product Declaration
- ▶TS Technical Specification
- ▶TC Technical Committee

Your speakers today

Øivind ROOTH

Chairperson CEN/TC 442 Specialist Director Norwegian Building Authority

Stepanka TOMANOVA

Chairwoman of the Czech mirror committee of CEN/TC442 and ISO/TC59/SC13 with working background of software for MEP engineers, coopering expert for Czech data dictionary

Espen SCHULZE

Group Vice President Research at Cobuilder - CEN/TC442/WG4 & WG7 Project leader and CEN/TC442/WG12 convenor

Robert HEINZE

CTO at RELUX (a lighting design software company). Electrical engineer and lighting designer. Liaison officer between lighting TCs and BIM TCs on CEN and ISO level (CEN/TC 169 - CEN/TC 442 and ISO/TC 274 - ISO/TC 59/SC 13)

Etienne CAILLEAU

Head of SMART Standards AFNOR Group

Kai OBERSTE-UFER

Senior Manager EntriWorX Specification Software

General information on BIM & scope of CEN/TC 442

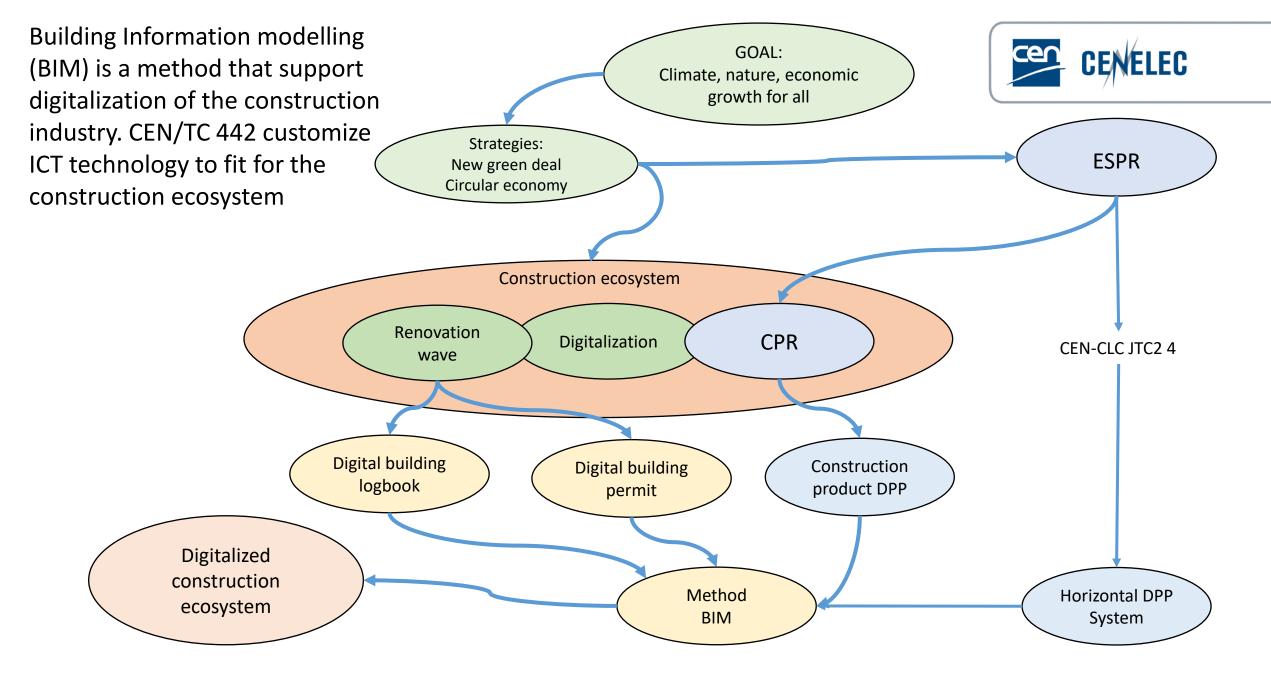
Øivind ROOTHChairperson CEN/TC 442
Specialist Director Norwegian Building Authority

CEN/TC 442 - Building Information Modelling

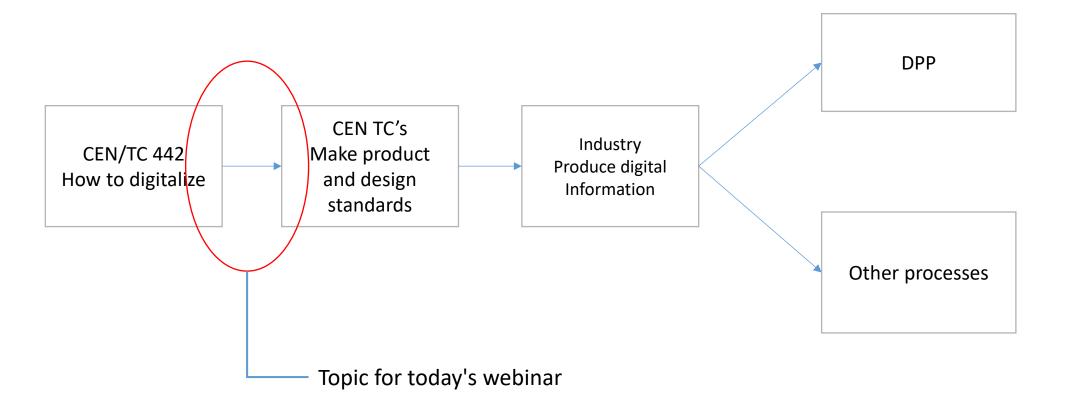
Scope

Standardization in the field of structured semantic life-cycle information for the built environment.

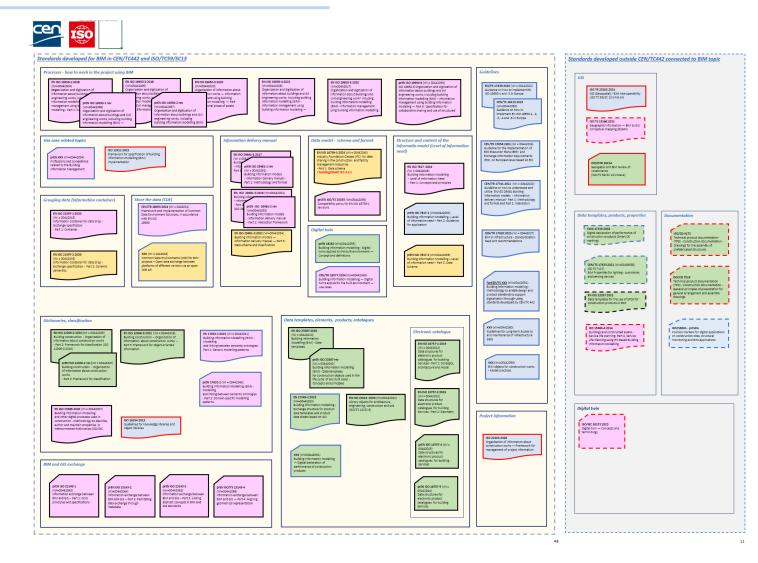
The committee will develop a structured set of standards, specifications and reports which **specify methodologies to** define, describe, exchange, monitor, record and securely handle asset data, semantics and processes with links to geospatial and other external data.


Structure of CEN/TC 442

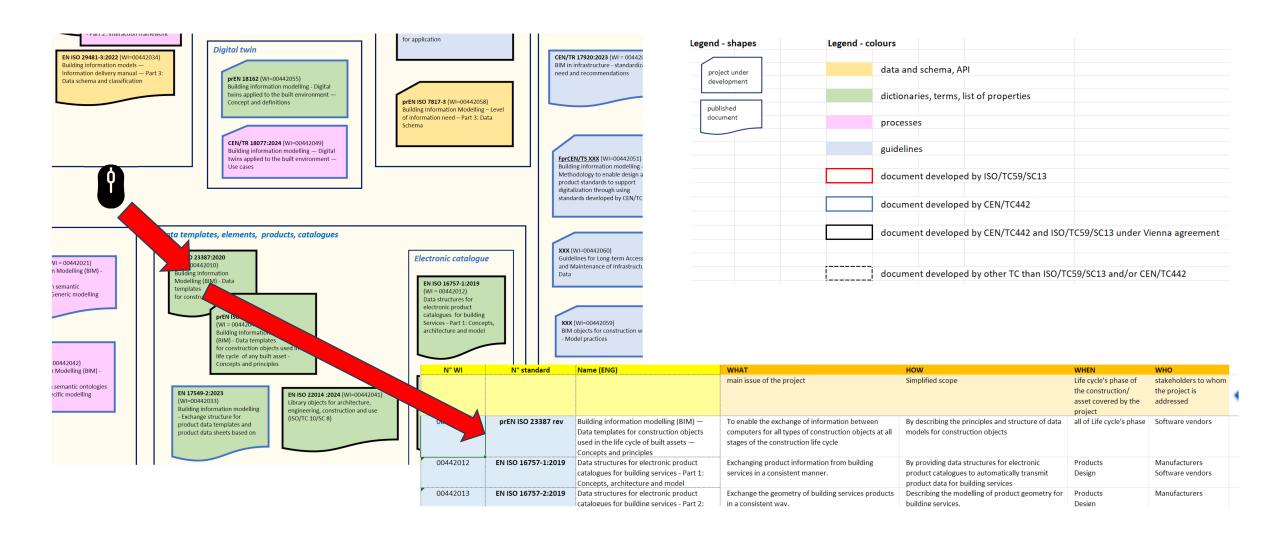
Management and Coordination									
WG 1 Mage Terminology Convener: Dan Rossiter (UK) Secretary: Danny Peacock (BSI)			TC secretariat <mark></mark> Chair: Øivind Rooth (Norway) Secretary: Lisbet Landfald (SN)			Chairpersons Advisory Group (CAG)			
Strategy and external relations									
	Convener : Rola	izontal Role nd Dominici (France) /iltart-Baquero (AFNC	DR)		WG10 - Strategy and Planning Strategy and Planning Convener: Hywel Davies (UK) Secretary: Danny Peacock (BSI)				
	Projects								
WG 2 🟴	WG 3 💳	WG 4 💶	WG 6 🎏	WG 8 💶	WG 9 🔼	WG 11 [™]	WG 12 🔼		
Exchange Information	Information Delivery Specifications	Support Data Dictionaries	Infrastructure	Competence	Digital twin	BIM objects	DoPC		
Convener: Thomas Liebich (Germany) Secretary: Izabela Liero (DIN)	Convener: Chomas Liebich (Germany) Secretary: Izabela Liero Convener: Roland Dominici (France) (France) Secretary: Ursula Viltart-Baquero Convener: Dominique Chevillard (France) Secretary: Stefan				Convener: Eduard Loscos (Spain) Secretary: AitorAragón Basabe (UNE)	Convener: Steen Sunesen(Norway) Secretary: Stefan Bæk Jensen (SN)	Convener: Espen Schulze (Norway) Secretary: AitorAragón Basabe (UNE)		



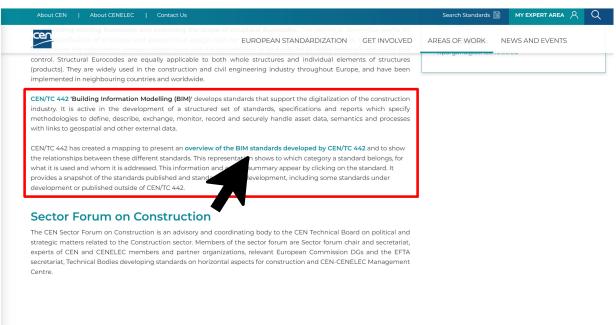
CEN/TC 442 and role in digitalization


Stepanka TOMANOVA

Chairwoman of the Czech mirror committee of CEN/TC442 and ISO/TC59/SC13 with working background of software for MEP engineers, coopering expert for Czech data dictionary


- ► Transformation to "digital world" has two main topics:
 - create and use digital data,
 - integration of digital technologies into processes;
- purpose of the standards map:
 - ▶ to explain the purpose of TC 442 documents,
 - ▶ to enable orientation in the processed topics,
 - create an open approach to connect domain topics with the building information modelling and management, digitalization in general;
- ► CEN/TC 442 standards map:
 - groups of standards target topics,
 - list of standards description, target users,
 - ▶ legend for groups of standards.

- Processes how to work in the project using BIM
- ▶ Use case related topics
- ► Grouping data (Information container)
- ▶ Store the data (CDE)
- ► Information delivery manual
- ▶ Data model schema and format
- ► Structure and content of the information model (Level of information need)
- Data templates, elements, products, catalogues
- ▶ **Dictionaries**, classification
- ► BIM and GIS exchange
- ► Project information
- ▶ Guidelines


CEN/TC 442 standards map – where to find | CEN/ELEC

https://www.cencenelec.eu/areas-of-work/cen-sectors/construction/

Construction Products Regulation

Espen SCHULZE

Group Vice President Research at Cobuilder - CEN/TC 442/WG4 & WG7 Project leader and CEN/TC 442/WG12 convenor

Construction Products Regulation

Implementing digitalization through the use of data dictionary and machine-readable format

It is necessary to establish well-functioning information flows, including via electronic means and in a machine-readable format Whereas: (4)

To improve machine readability, it is necessary to establish a common data dictionary based on European standards, a tool to govern and publish the data structure and their meaningful definitions and descriptions for all relevant construction products. For each product family or category, the data dictionary should include all the essential characteristics and other properties as set out in the harmonised technical specifications as well as other information required according to this regulation. A data dictionary harmonised at the EU level allows for the classification and use of structured definitions by both competent national authorities and in the further digitalisation of the construction sector, in particular in Building Information Modelling, building logbooks, digital passports and registries. Whereas: (84a)

Construction Products Regulation

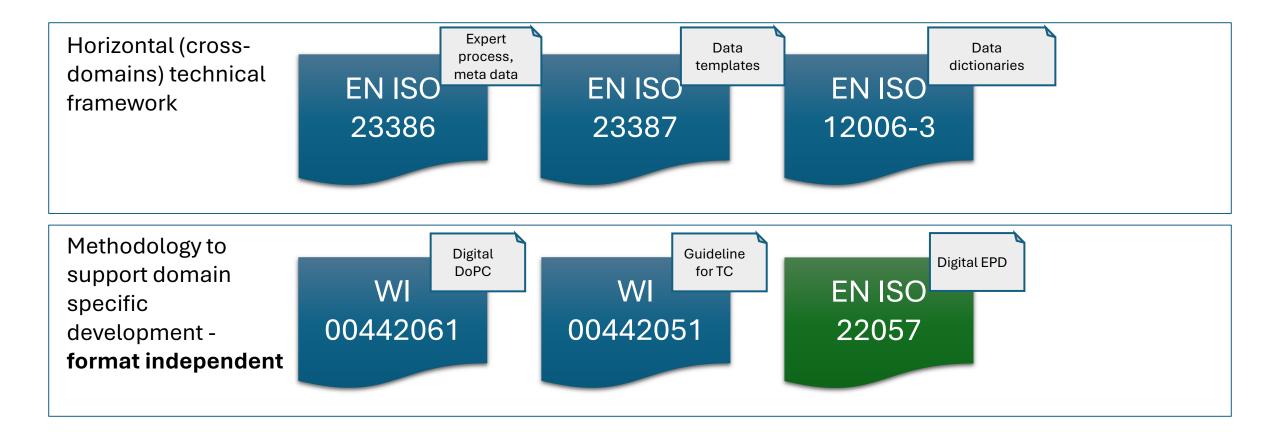
Digital Product Passport

(including Declaration of Performance/Conformity)

Article 75 Construction digital product passport system

The construction digital product passport system shall:

- be compatible, interoperable and built on the digital product passport established by the regulation (EU) .../... [Regulation on eco design for sustainable products], without compromising interoperability with Building Information Modelling (BIM) while taking into account the specific characteristics and requirements related to construction products;


Article 77 General requirements for the product passport

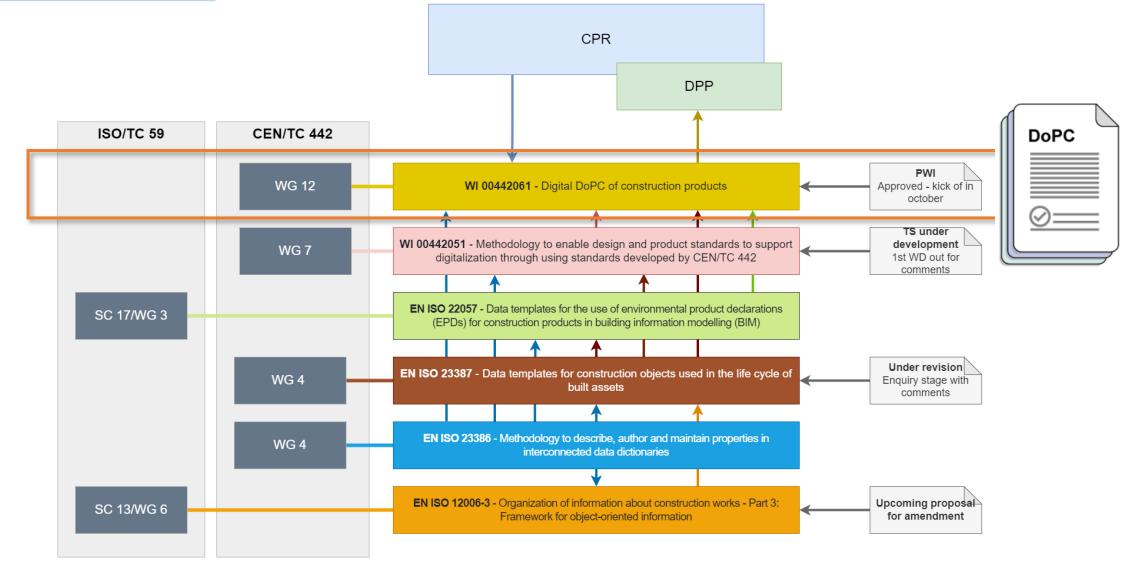
all information included in the product passport shall be based on open standards, developed with an interoperable format and shall be, as appropriate, machine-readable, structured, searchable and transferable

20

BIM standardization in CEN/TC 442 supporting data dictionaries

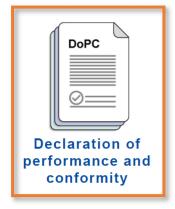
Methodology for CEN Technical Committees

TC XXX


Methodology for CEN Technical Committees CENELEC

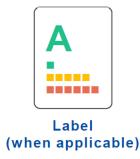
Name	Definition	Short name	Symbol	Reference document	Quantity kind	Unit	Data type	Possible values	Boundary values	Proxy dependency
maximum closing operating force acc. to EN 12046-2				EN 12046-2	force	N	real	user input		
maximum hardware operating force [lever handles] acc. to EN 12046-2				EN 12046-2	force	N	real	user input		
maximum hardware operating force [finger operated] acc. to EN 12046-2				EN 12046-2	force	N	real	user input		
maximum hardware operating torque [lever handles] acc. to EN 12046-2				EN 12046-2	torque	Nm	real	user input		
maximum hardware operating torque [finger operated] acc. to EN 12046-2				EN 12046-2	torque	Nm	real	user input		
water tightness				EN 14351- 1:2006+A2:2016	Inherited	Inherited	Inherited	Inherited	Inherited	classification of water tightness [method A] acc. to EN 12208:1999; classification of water tightness [method B] acc. to EN 12208:1999
classification of water tightness [method A] acc. to EN 12208:1999				EN 12208:1999	nominal	unitless	string	1A; 2A; 3A; 4A; 5A; 6A; 7A; 8A; 9A; E750; E900; E1050; E1200; E1350; E1500; E1650; E1800		
classification of water tightness [method B] acc. to EN 12208:1999				EN 12208:1999	nominal	unitless	string	18; 28; 38; 48; 58; 68; 78		
water tightness test result acc. to EN 1027:2016				EN 1027:2016	logical	unitless	boolean	pass; fail		
test pressure acc. to EN 1027:2016				EN 1027:2016	pressure	Pa	real	0; 50; 100; 150; 200; 250; 300; 450; 600; 750; 900; 1050; 1200; 1350; 1500; 1650; 1800		
air permeability				EN 14351- 1:2006+A2:2016	Inherited	Inherited	Inherited	Inherited	Inherited	classification of air permeability acc. to EN 12210:2016
classification of air permeability acc. to EN 12207:2016				EN 12207:2016	nominal	unitless	string	1; 2; 3; 4		
classification of air permeability related to overall area acc. to EN 12207:2016				EN 12207:2016	nominal	unitless	string	1; 2; 3; 4		

Digital DoPC - supporting standards



Digital Product Passport for construction products

DPP content


General product information, instructions for use and safety information

Technical documentation

Documentation required under other Union law

Unique operator identifier dpp:VAT:AT U14589505

Unique facility identifier dpp:ISO3166-2:BE

CEN/TC 33 "Doors, windows, shutters, building hardware and curtain walling"

Dr. Kai Oberste-Ufer

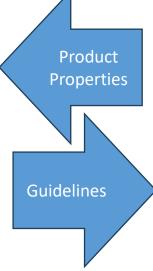
Senior Manager EntriWorX Specification Software CEN/TC 33 WG4 TG18

Dormakaba International Holding GmbH kai.oberste-ufer@dormakaba.com

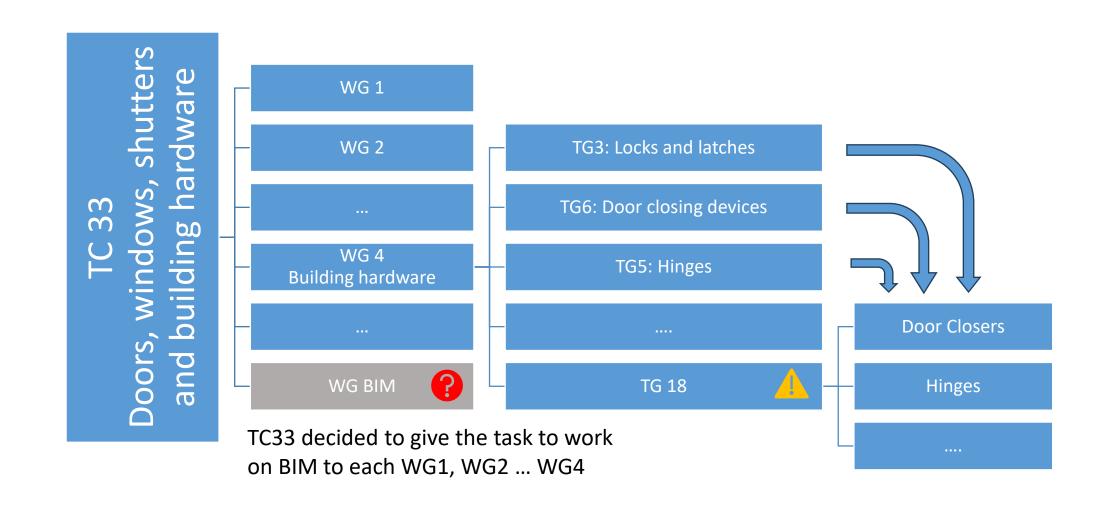
History

►<u>CEN/TC 33</u> - Doors, windows, shutters and building hardware

► CEN/TC 33/WG 4 - Building hardware


- ►CEN/TC 33/WG 4/TG 18 BIM
 - ▶ Defining guideline for description of door & window hardware products in BIM

► The European Federation of Locks & Building Hardware Manufacturers


► Working Group Digitalisation

- ▶TG BIM
 - ► Task Group « Door and Window Hardware properties » guided by a BIM Expert

Content

Goal

- ► Technical Specification (on the basis of <u>EN ISO 23386</u>) for **BIM-**Properties for door and window Hardware
- ► Attachment to Technical Specification with Property-Collection
 - ► Step 1: Excel format
 - ► Step 2: European dictionary of door & window hardware properties (with the properties described according to Technical specification)
 - ► Common dictionary missing
- ▶Both CEN documents will be at disposal of all BIM Stakeholders to describe Doors & Windows hardware

Excel Template EN ISO 23386

► Subset of properties for essential attributes

► Group of properties

▶Properties

PA005

Date of last change

ISO 8601

Mandatory if

Useless

Content

PA021 Group(s) of properties	PA016 Names in language N	PA017 Definition of the property in language N	PA018 Description of the property in language N	PA019 Example in language N	PA39 Liste de valeurs possibles dans la langue N
Performances en-EN	corrosion resistance of the single point lock (temperature) en-EN	NF EN 12209:2003 (7.2.6) en-EN	ability of the single point lock to resist corrosion and temperature for a specified period of time according to EN 12209 edition 2003 or 2016 en-EN	High resistance ; no requirement en-EN	<u>Liste déroulante</u>
Performances en-EN	durability and load of the latch bolt lock en-EN	NF EN 12209:2003 (7.2.2) en-EN	ability of the latch bolt to withstand a force associated with a specified number of cycles in accordance with NF EN 12209:2003 standard (7.2.2) en-EN	100 000 cycles, 25N load en- EN	drop-down list
Performances en-EN	lock handing en-EN	DIN 18251-1 en-EN	intuitive direction of use of the lock which is characterized by the location of the lock on the door, on the left or on the right, on the hinge side en-EN	Reversible	drop-down list
Dimensions en-EN	overall lockcase depth en-EN	UNIQ_SERR-001 (dimension D) en-EN	measurement, in mm, of the overall lockcase depth of the lock in the door en-EN	76 en-EN	mm
Dimensions en-EN	overall lockcase height en-EN	UNIQ_SERR-001 (dimension S) en-EN	measurement, in mm, of the overall lockcase height of the lock in the door en-EN	145 en-EN	<u>mm</u>
Dimensions en-EN	overall lockcase thickness en-EN	UNIQ_SERR-001 (dimension F) en-EN	measurement, in mm, of the overall lockcase thickness without its forend en-EN measurement, in min, or the distance between the center of the follower (lever	14 en-EN	mm
Dimensions en-EN	centre to centre measurement of the lock en-EN	UNIQ_SERR-001 (dimension P) en-EN	handle square) and the center of the locking element [locking square or	70 en-EN	<u>mm</u>
Dimensions en-EN	backset of the lock (excluding forend) en-EN	UNIQ_SERR-001 (dimension A) en-EN	measurement, in mm, of the distance between the edge of the lockcase after its forend and the center of the locking element (locking square or keyhole) en-EN	47 en-EN	<u>mm</u>
Dimensions en-EN	backset of the lock (forend included) en-EN	UNIQ_SERR-001 (dimension C) en-EN	measurement, in mm, of the distance between the forend and the center of the locking element (locking square or keyhole) en-EN	50 en-EN	mm
Dimensions en-EN	lock follower size en-EN	UNIQ_SERR-001 (dimension T) en-EN	measurement, in mm, of the lever handle operating square size enabling the lock follower to be operated en-EN	7 en-EN	mm
Dimensions en-EN	deadbolt throught en-EN	UNIQ_SERR-001 (dimension K) en-EN	measurement, in mm, of the deadbolt throught outside the lock when it is fully deployed with the lock in locked position en-EN	20 en-EN	<u>mm</u>
Dimensions en-EN	latch bolt throught en-EN	UNIQ_SERR-001 (dimension M) en-EN	measurement, in mm, of the latch bolt throught outside the lock when it is at rest with the door closed and the handle at restlen-EN	11,5 en-EN	mm
Dimensions en-EN	forend height en-EN	UNIQ_SERR-001 (dimension G) en-EN	defines the total height of the lock forend en-EN	230 en-EN	mm
Dimensions en-EN	forend width en-EN	UNIQ_SERR-001 (dimension H) en-EN	defines the total width of the lock forend en-EN	20 en-EN	mm
Dimensions en-EN	forend thickness en-EN	UNIQ_SERR-001 (dimension E) en-EN	defines the total thickness of the lock forend en-EN	3 en-EN	mm

Alignment TC 442/WG7 & TC 33

- ► Identification of gaps and touchpoints
 - ►EN ISO 23386: Missing attribute for standard reference (TG18 uses PA017)
 - ▶TC 33/WG7: Alignment of properties with other standards
- ▶Open Discussions on how to enable other WG's in TC 33 to work on properties
- ►Help TC 33 to go from "BIM-Properties" to DPP & Digital Standards

CEN/TC 169 Light and lighting

Robert HEINZE

CTO at RELUX (a lighting design software company). Electrical engineer and lighting designer.

Liaison officer between lighting TCs and BIM TCs on CEN and ISO level (CEN/TC 169 - CEN/TC 442 and ISO/TC 274 - ISO/TC 59/SC 13).

CEN/TC 169 - Problem

- Lighting systems have hundreds of properties
- there were not unified used in name or ID or value format
- Engineers / Designers needs to rename or recreate lists

TRILUX

Model_0	5051RMV-L/28/54 E
Luminous flux of luminaire (lm)	1953
Lamp_0	1T528G5
Dimming/Balast	-/E
Degree of protection	IP20
Connection Load	30.00 VA
Colour temperature (K)	4000
~ 1	

ZUMTOBEL

Elektro		
Lampe	T16+LED	
Kommentare zu Wattzahl		
Elektro - Lasten		
Scheinlast	68.90 VA	

PHILIPS

30.00 V
ED15S/830
1.00 VA
1

THORLUX

Elektro - Beleuchtung	
Lamp Wattage	1 x 28w
Voltage	230v
Elektro - Lasten	
Scheinlast	106.00 VA

Source: the same properties of luminaires in Revit

CEN/TC 169 - Properties

- CEN/TC 442 created the EN ISO 23386
- fundamental definition of building object properties

- defines the attributes of the properties

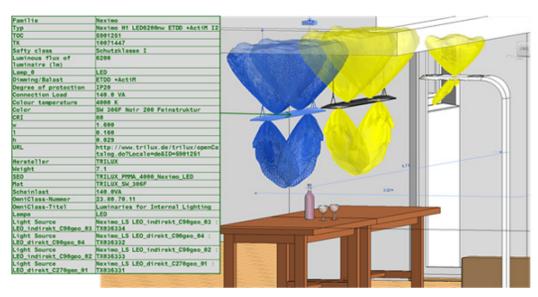
(e.g. name, ID, ...)

Table 1 — Property attributes

Name	Description	Example	Interconnected dictionaries management rule	Request form management rule	Туре	List of values
globally unique identifier	globally unique identifier generated using an algorithm in conformity with standard ISO/IEC 11578:1996 See RFC4122	936DA01F-9ABD-4D9D- 80C7-02AF85C822A8	Mandatory, calculated		String Single-value	
Status	Status of the property during its life cycle.		Mandatory Calculated		enumeration Single-value	Active Inactive
Date of creation	Date of validation of the property creation request.	2014-04-30T10:39:53Z	Mandatory Calculated		Date In accordance with ISO 8601 Format=YYYY- MM- DDThh:mm:ssTZD	
Date of activation	Date after when the property can be used.		Mandatory if the property is validated. Calculated		Date In accordance with ISO 8601 Format=YYYY- MM- DDThh:mm:ssTZD	
Date of last change	Date of validation of the last change request		Mandatory Calculated		Date In accordance with ISO 8601 Format=YYYY- MM- DDThh:mm:ssTZD	

Source: EN ISO 23386

CEN/TC 169 - Lighting


- Real life experts needed to define properties
- Lighting industry collecting and describing properties
- Start on association level ZVEI

- Later on CEN and ISO level with liaisons to other TCs

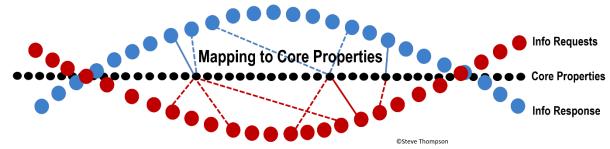
incl. IEC, CIE, ...

- No priorities, no use cases

- with IDs

Source: Luminaire properties in Revit

CEN/TC 169 – Lighting Properties



- CEN/TC 169 created the CEN/TS 17623 (CEN ISO/TS 7127)

- a list of all lighting fixture and sensing devices properties

(e.g. voltage, luminous flux, ...)

- according the structure of EN ISO 23386 (e.g. ID, name, description, ...)

Source: Mapping core, inspired by Steve Thompson

Table 4 (continued)

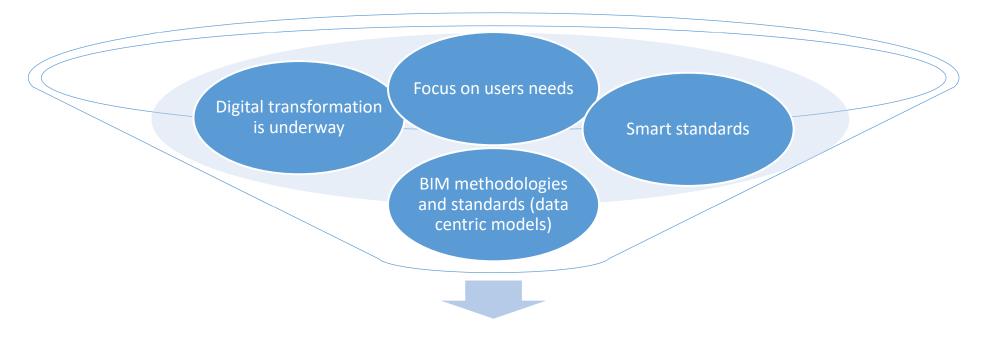
GUID	ID	Name	Description	Symbol	Format, Unit	Value set	Examples
2oxTEZw7TCPPcnn- sapMO1u	04-0005	rated luminous flux of the lumi- naire	Value of the initial luminous flux of a given type of luminaire declared by the manufacturer or the responsible vendor, the luminaire being operated at a ambient temperature of 25 °C Definition of luminous flux could be found in CIE S 017:2020.		1E0, lm	n.a.	3 430
2gmo70bVX90u- Jh2YAvS62s	04-0006	rated luminous flux of the light source	Value of the initial luminous flux of a given type of light source declared by the manufacturer or the responsible vendor, the light source being operated at a ambient temperature of 25 °C Definition of luminous flux could be found in CIE S 017:2020.		1E0, lm	n.a.	2 600
1QmFILGbX6_ BfU63rG5mrh	04-0007	luminous effi- cacy	Quotient of the luminous flux emitted by the luminaire and the power ab- sorbed by the light source and associ- ated circuits of the luminaire.		1E0, lm/W	n.a.	130
2gMYX1hk- HEE8kQmgimay3h	04-0008	optical light output ratio LOR	Quotient of the total luminous flux of the luminaire, measured under specified practical conditions with its own light source(s) and equipment, and the sum of the individual luminous fluxes of the same light source(s) when operated outside the luminaire with the same equipment, under specified conditions. According to CIE S 017:2020, 17-29-052. Always 1 for LED luminaires with integrated light sources.		1E0, %	n.a.	0,79
28T0Q968jDwvyx- AshmZRwz	04-0009	type of distribution	The classification of luminaires regarding the amount of luminous flux emitted into upper or lower half-space. Upward flux fraction (UFF) of 10 % means direct. Upward flux fraction of 30 % means direct/indirect. Upward flux fraction of 70 % means indirect/direct. Upward flux fraction of 90 % means indirect. Upward flux fraction of 90 % means indirect. Reference: ISO/CIE 20086:2019.		n.a.	direct, indirect, direct /indirect, indirect /direct	direct/indirect

Source: CEN ISO/TS 7127

XP BIM: SMART Standards - Standards digitalization (AFNOR)

Head of SMART Standards AFNOR Group

Digital transformation


Approach and actions carried out by AFNOR

- Context
- Pilots conducted in 2023 and 2024
- Roadmap adapted to digital transformation
- Perspectives

Context of Digital Transformation

GENERAL CONTEXT BACK IN EARLY 2020 s

AFNOR's transformation is at stake to meet users' challenges

What if AFNOR be an operator of this transformation?

Context of the 2 pilots conducted

Construction sector

Digital transformation — Fragmented industry Integrated platform and interoperability needed

ISO-IEC – CEN-CENELEC ecosystem

Several reference standards
ISO IEC SMART Standards
program
Focus on provisions

AFNOR

Smart standards program
Construction TCs mature on
BIM methodologies and
standards
Similar needs emerging from
several sectors

Data dictionary

BIM standards natively integrated
Mature existing solutions
Content available in standards
Another way to get access to properties

Digital Product Passports (DPP)

CSRD // ESPR (in force on 2024) with specific requirements in construction industry

Content distribution

Content usage

Consequences?

Existing data models and standards

ISO 23386 & ISO 23387—

property modeling in data dictionaries

ISO 12006-3 –Modeling of construction
objects (...)

NF EN ISO 7817-1:2024 -

Level of Information Needed (LoIN)

IFC (Industry Foundation Classes)

IDS (Information Delivery Specification)

What if AENOR

What if AFNOR was a data dictionary operator?

What products?

What services?

Better understand use cases

Better assess the maturity on the use of data dictionaries / towards DPP projection

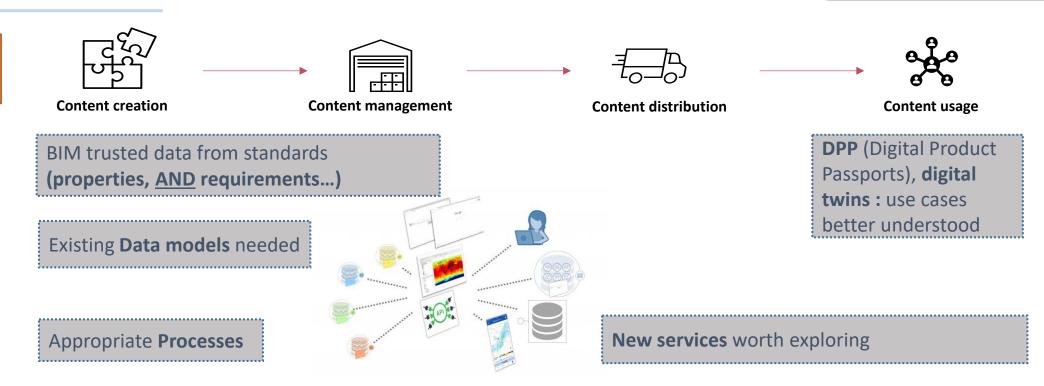
Better assess the value expected

What is needed for conformity assessment to meet the ESPR Regulation?

Challenges?

On processes and tools

... learnings and impacts on the whole value chain?


Learnings at a glance...

Standards ecosystem

Create and maintain trusted data

Smart Standards approach

The need for a common language (semantic interoperability) based on standards (data models, data exchange, terms and concepts, requirements)

is confirmed in building sector,

is emerging from various sectors

Scaling up [appropriate processes and tools]

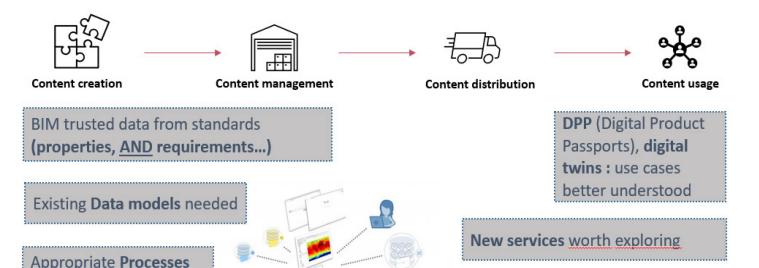
Keep on **exploring impacts of trusted data** on the business value chain (data storage, distribution, securing data and exchanges...)

...and ongoing actions carried out by AFNOR Smart program

SMART Program roadmap dedicated to data digitalization Construction sector

Smart processes & tools

Influence the standards ecosystem


Users groups

Semantic interoperability
SIM-Standard Information Model/Core
ontology)
Maintainance / Governance

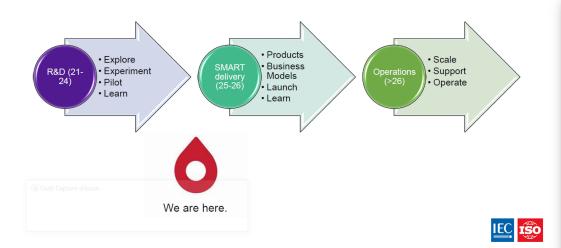
Standardisation organisations perspectives

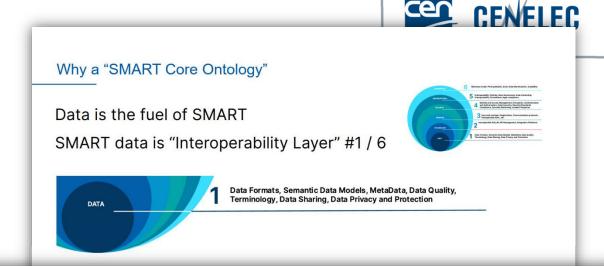
Create and maintain trusted data

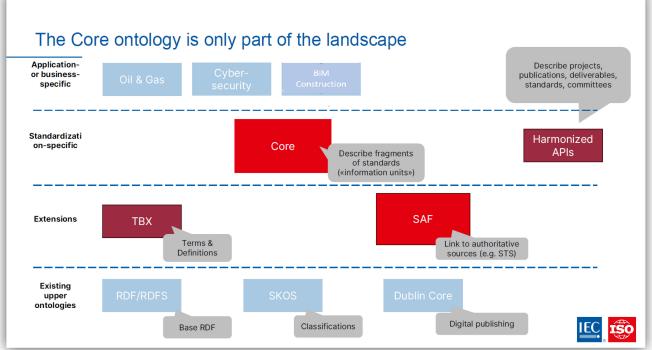
Smart Standards approach

The need for a common language (semantic interoperability) based on standards (data models, data exchange, terms and concepts, requirements) is confirmed in building sector,

is emerging from various sectors

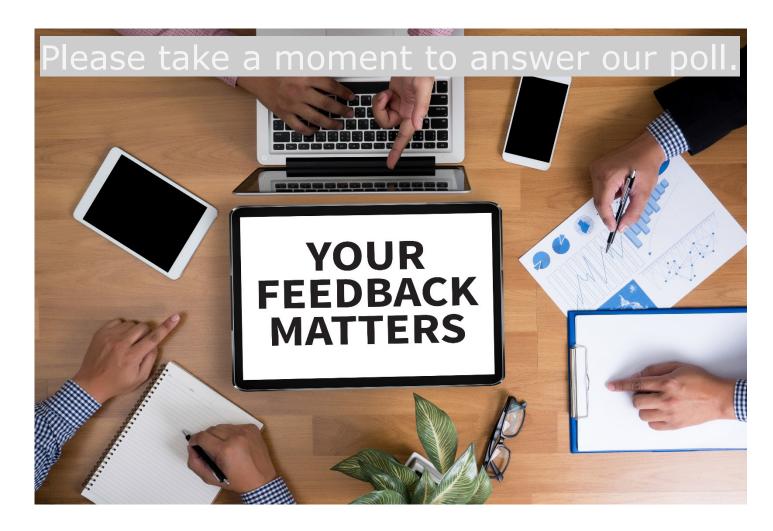

Scaling up [appropriate processes and tools]


Keep on exploring impacts of trusted data on the business value chain (data storage, distribution, securing data and exchanges...)


SMART OVERVIEW

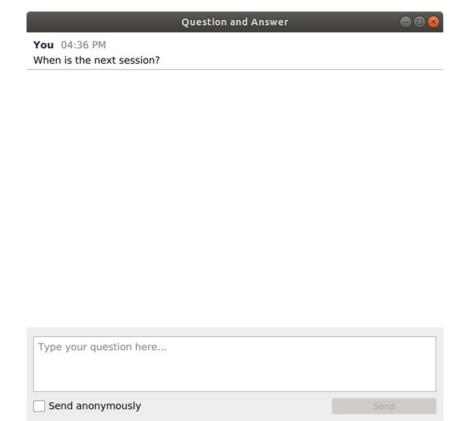
FROM ISO IEC SMART CONFERENCE (LAST DECEMBER)

SMART Overview


Take-Aways

- Building Information Modelling (BIM) is about transforming data to information enabling digitalization of the Construction Industry value chain in the lifecycle of assets.
- ▶ Data must be structured and managed to become useful information that can be shared and support decisions in the whole lifecycle of an asset.
- ▶ In many ways TC 442 is only a facilitator
 - ► TC 442 standardize methods on how data can be exchanged, and information managed digitally
 - ▶ TCs must define their own properties, processes and elements using TC 442 methods.
 - ▶ TC 442 will support CEN and CENELEC TC's with tools, but TC 442 cannot do this alone.
- ▶ Be a liaison to TC 442 and join the work in WG7 and WG12. We need to digitize together to be successful.

Your feedback



Question time

► Use the Q&A panel to submit your questions

European Standardization Organizations

Thank you for your participation!

Upcoming webinars/events

2025-03-18 - Cyber Resilience Act : deep dive session

2025-03-20 - Conference 'European standardization supporting new legislative cybersecurity landscape'

2025-04-08 - Hybrid event Cyber Resilience Act and the horizontal standards